首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   19篇
  国内免费   2篇
大气科学   4篇
地球物理   73篇
地质学   99篇
海洋学   13篇
天文学   26篇
自然地理   9篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   5篇
  2016年   14篇
  2015年   13篇
  2014年   8篇
  2013年   12篇
  2012年   10篇
  2011年   18篇
  2010年   11篇
  2009年   18篇
  2008年   27篇
  2007年   8篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
31.
32.
We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy.Transverse-component ambient noise data from October 2005 through March 2007 recorded at 114 seismic stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broadband network,the Mediterranean Very Broadband Seismographic Network (MedNet) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) yield more than 2 000 Love wave group velocity measurements using the multiple-filter analysis technique.In the short period band (5-20 s),the cross-correlations show clearly one-sided asymmetric feature due to non-uniform noise distribution and high local activities,and in the long period band (20 s) this feature becomes weak owing to more diffusive noise distribution.Based on these measurements,Love wave group velocity dispersion maps in the 8-34 s period band are constructed,then the SH wave velocity structures from the Love wave dispersions are inverted.The final results obtained from Love wave data are overall in good agreement with those from Rayleigh waves.Both Love and Rayleigh wave inversions all reveal that the Po plain basin is resolved with low velocity at shallow depth,and the Tyrrhenian sea is characterized with higher velocity below 8 km due to its thin oceanic crust.  相似文献   
33.
Infrastructure owners and operators, or governmental agencies, need rapid screening tools to prioritize detailed risk assessment and retrofit resources allocation. This paper provides one such tool, for use by highway administrations, based on Bayesian belief network (BBN) and aimed at replacing so‐called generic or typological seismic fragility functions for reinforced concrete girder bridges. Resources for detailed assessments should be allocated to bridges with highest consequence of damage, for which site hazard, bridge fragility, and traffic data are needed. The proposed BBN based model is used to quantify seismic fragility of bridges based on data that can be obtained by visual inspection and engineering drawings. Results show that the predicted fragilities are of sufficient accuracy for establishing relative ranking and prioritizing. While the actual data and seismic hazard employed to train the network (establishing conditional probability tables) refer to the Italian bridge stock, the network structure and engineering judgment can easily be adopted for bridges in different geographical locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
34.
35.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   
36.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   
37.
A natural Ca-poor pigeonite (Wo6En76Fs18) from the ureilite meteorite sample PCA82506-3, free of exsolved augite, was studied by in situ high-temperature single-crystal X-ray diffraction. The sample, monoclinic P21/c, was annealed up to 1,093°C to induce a phase transition from P21/c to C2/c symmetry. The variation with increasing temperature of the lattice parameters and of the intensity of the b-type reflections (h + k = 2n + 1, present only in the P21/c phase) showed a displacive phase transition P21/c to C2/c at a transition temperature T Tr = 944°C, first order in character. The Fe–Mg exchange kinetics was studied by ex situ single-crystal X-ray diffraction in a range of temperatures between the closure temperature of the Fe–Mg exchange reaction and the transition temperature. Isothermal disordering annealing experiments, using the IW buffer, were performed on three crystals at 790, 840 and 865°C. Linear regression of ln k D versus 1/T yielded the following equation: ln k\textD = - 3717( ±416)/T(K) + 1.290( ±0.378);    (R2 = 0.988) \ln \,k_{\text{D}} = - 3717( \pm 416)/T(K) + 1.290( \pm 0.378);\quad (R^{2} = 0.988) . The closure temperature (T c) calculated using this equation was ∼740(±30)°C. Analysis of the kinetic data carried out taking into account the e.s.d.'s of the atomic fractions used to define the Fe–Mg degree of order, performed according to Mueller’s model, allowed us to retrieve the disordering rate constants C 0 K dis+ for all three temperatures yielding the following Arrhenius relation: ln( C0 K\textdis + ) = ln K0 - Q/(RT) = 20.99( ±3.74) - 26406( ±4165)/T(K);    (R2 = 0.988) \ln \left( {C_{0} K_{\text{dis}}^{ + } } \right) = \ln \,K_{0} - Q/(RT) = 20.99( \pm 3.74) - 26406( \pm 4165)/T(K);\quad (R^{2} = 0.988) . An activation energy of 52.5(±4) kcal/mol for the Fe–Mg exchange process was obtained. The above relation was used to calculate the following Arrhenius relation modified as a function of X Fe (in the range of X Fe = 0.20–0.50): ln( C0 K\textdis + ) = (21.185 - 1.47X\textFe ) - \frac(27267 - 4170X\textFe )T(K) \ln \left( {C_{0} K_{\text{dis}}^{ + } } \right) = (21.185 - 1.47X_{\text{Fe}} ) - {\frac{{(27267 - 4170X_{\text{Fe}} )}}{T(K)}} . The cooling time constant, η = 6 × 10−1 K−1 year−1 calculated on the PCA82506-3 sample, provided a cooling rate of the order of 1°C/min consistent with the extremely fast late cooling history of the ureilite parent body after impact excavation.  相似文献   
38.
The Triassic succession of the central Southern Alps (Italy) is stacked into several units bounded by south-verging low-angle thrust faults, which are related to two successive steps of crustal shortening. The thrust surfaces are cut by high-angle extensional and strike-slip faults, which controlled the emplacement of hypabissal magmatic intrusions that post-date thrusts motions. Intrusion ages based on SHRIMP U–Pb zircon dating span between 42 ± 1 and 39 ± 1 Ma, suggesting close time relationships with the earliest Adamello intrusion stages and, more in general, with the widespread calc-alkaline magmatism described in the Southern Alps. Fission-track ages of magmatic apatites are indistinguishable from U–Pb crystallization ages of zircons, suggesting that the intrusion occurred in country rocks already exhumed above the partial annealing zone of apatite (depth < 2–4 km). These data indicate that the central Southern Alps were already structured and largely exhumed in the Middle Eocene. Although we describe minor faults affecting magmatic bodies and local reactivations of older structures, no major internal deformations have occurred in the area after the Bartonian. Neogene deformations were instead concentrated farther south, along the frontal part of the belt.  相似文献   
39.
Chalk is exposed in the Heidestrasse quarry at Lägerdorf, at the top of the NE-SW trending Krempe salt ridge. Structural data indicate the presence of two joint sets, striking almost parallel and perpendicular to the salt ridge, respectively, and of a set of conjugate extensional faults and fault zones striking NW-SE, i.e. almost perpendicular to the salt ridge. Within the overall NW-SE trend of joints and faults, strike variations occur from the massive chalk exposed in the lower half of the quarry, to the overlying layered chalk. A large variability characterizes the normalized spacing of both joint sets, which does not show any clear trend with layer dip. In situ measurements indicate that the cross-sectional permeability of tight joints increases 1-2 orders of magnitude with respect to the undeformed chalk. We propose that joint and fault azimuthal variability resulted from changes through time of the stress ellipsoid at the top of the salt ridge, while joint spacing variability is associated with the weak mechanical influence of bedding in chalk. Azimuthal variability improves fracture connectivity and, hence, permeability and fluid flow.  相似文献   
40.
In this work, we study the link between the evolution of the internal structure of Vesta and thermal heating due to 26Al and 60Fe and long‐lived radionuclides, taking into account the chemical differentiation of the body and the affinity of 26Al with silicates. We explored several thermal and structural scenarios differing in the available strength of energy due to the radiogenic heating and in the postsintering macroporosity. By comparing them with the data supplied by the HEDs and the Dawn NASA mission, we use our results to constrain the accretion and differentiation time as well as the physical properties of the core. Differentiation takes place in all scenarios in which Vesta completes its accretion in <1.4 Ma after the injection of 26Al into the solar nebula. In all those scenarios where Vesta completes its formation in <1 Ma from the injection of 26Al, the degree of silicate melting reaches 100 vol% throughout the whole asteroid. If Vesta completed its formation between 1 and 1.4 Ma after 26Al injection, the degree of silicate melting exceeds 50 vol% over the whole asteroid, but reaches 100 vol% only in the hottest, outermost part of the mantle in all scenarios where the porosity is lower than 5 vol%. If the formation of Vesta occurred later than 1.5 Ma after the injection of 26Al, the degree of silicate melting is always lower than 50 vol% and is limited only to a small region of the asteroid. The radiation at the surface dominates the evolution of the crust, which ranges in thickness from 8 to about 30 km after 5 Ma: a layer about 3–20 km thick is composed of primitive unmelted chondritic material, while a layer of about 5–10 km is eucritic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号